
International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2018]

55

Face Features Recognition Using Soft

Computing Method
Dr. Vijay Pathak

1
, Mr.Deepak

2

1Institute of Computer Science&Technology, Varanasi
2Research Scholar, Uttarakhand Technical University, Dehradun, U.K.

1vijayshepa@gmail.com
2dpky85@gmail.com

Abstract—Evolutionary computing method isa

computing paradigm that originated in the biological

word. There various techniques used by various

researchers to recognize the face. In this paper we

recognized the face using Soft computing method.

1 NEURAL COMPUTING

Artificial Neural Networks (ANN) is a

computing paradigm that originated in the

biological world. Neural Computation does

not have to be the computation carried out

by nerve cells. An artificial system can

emulate a simplified version of a neural

computational system. ANN is an example

of such an artificial neural system. Even

though the name ANN has been the most

common but other names have been used

synonymously as well. Examples of these

names are Neural Computing,

Connectionism, Parallel Distributed

Processing, and Connection Science [1].

The multidisciplinary nature of the field of

neural networks and its origin in biological

science makes it difficult to state a rigorous

definition for the field and what it addresses.

This is the same problem with Evolutional

and Genetic Computing. However, few

references have attempted such a definition.

A definition given by Igor Aleksander and

Helen Morton is given as follows. “Neural

computing is the study of networks of

adaptable nodes which, through a process of

learning from task examples, store

experiential knowledge and make it

available for use” [1].

ANNs have often been used as an alternative

to the techniques of standard nonlinear

regression and cluster analysis to carry out

statistical analysis and data modeling. In

addition, computer scientists and engineers

have seen ANNs, as providing a new

experimental paradigm for Parallel

Distributed Processing, rather than the

algorithmic paradigm that dominated the

field of machine intelligence prior to the

ANN revolution [2].

Although scientists from various fields

worked on the study of understanding and

modeling of neuro-sciences, ANNs were

actually realized in the 1940s. Warren

McCulloch and Walter Pitts designed the

first ANNs [3]. The first learning rule for

ANNs was designed by Donald Hebb in

McGill University [4]. In the 1950s and

1960s, ANNs entered their first flowering

era. The most remarkable implementations

of that era were the development of the

Perceptronsand the ADALINE algorithm.

After that, there was a rather quiet period in

the 1970s, regardless of the works of

Kohonen, Anderson, Grossberg, and

Carpenter. The 1980s witnessed the second

revival of ANNs. Back-Propagation,

Hopfield Nets, Neocognitron, and

Boltzmann Machinewere the most

remarkable developments of that era [5].

An ANN is a computational structure

designed to mimic biological neural

networks. The ANN consists of

mailto:1vijayshepa@gmail.com

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2018]

56

computational units called neurons, which

are connected by means of weighted

interconnections. The weight of an

interconnection is a number that expresses

the strength of the associated

interconnection.

The main characteristic of ANNs is their

ability to learn. The learning process is

achieved by adjusting the weights of the

interconnections according to some applied

learning algorithms. Therefore, the basic

attributes of ANNs can be classified into

Architectural attributes and Neurodynamic

attributes [6]. The architectural attributes

define the network structure, i.e., number

and topology of neurons and their

interconnectivity. The neurodynamc

attributes define the functionality of the

ANN.

ANNs were developed in the 1960s after a

series of developments, proposals, and

implementations. The most remarkable

foundational achievements are the work on

Spontaneous Learning by Rosenbaltt in

1959 [7], Competitive Learning by Stark,

Okajima, and Whipple in 1962 [8], and

ADALINE/MADALINE algorithms by

Widrow and Hoff in 1960 [9, 10]. However,

it is important to note that modeling a

neuron mathematically has been a research

problem for over a hundred years [6].

2. SO, WHAT EXACTLY A NEURAL NETWORK

IS?

A neural network is mans crude means of

making an attempt to simulate the brain

electronically. therefore to grasp however a

neural web works we tend to initial have a

glance at however the previous grey

substance will its business.

Our brains square measure created of

regarding a hundred billion small units

known as neurons. every vegetative cell is

connected to thousands of different neurons

and communicates with them via chemistry

signals. Signals returning into the vegetative

cell square measure received via junctions

known as synapses, these successively

square measure situated at the top of

branches of the vegetative cell cell known as

dendrites. The vegetative cell endlessly

receives signals from these inputs so

performs to a small degree little bit of

magic. What the vegetative cell will (this is

over simplified i would add) is total up the

inputs to itself in how so, if the top result's

larger than some threshold price, the

vegetative cell fires. It generates a voltage

and outputs a signal along something called

an axon. Just have a good look at the

illustration and try to picture what is

happening within this simple little cell.

Neural networks are made up of many

artificial neurons. An artificial nerve cell is

solely associate electronically modelled

biological nerve cell. what number neurons

area unit used depends on the task at hand. It

may well be as few as 3 or as several as

many thousand. One optimistic man of

science has even arduous wired a pair of

million neurons along within the hope he

will come back up with one thing as

intelligent as a cat though the majority

within the AI community doubt he are going

to be thriving. There area unit many

alternative ways that} of connecting

artificial neurons along to make a neural

network however I shall be concentrating on

the foremost common which is termed a

feed forward network.

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2018]

57

Each input into the somatic cell has its own

weight related to it illustrated by the red

circle. A we have a tendency toight is just a

floating purpose range and it's these we alter

once we eventually return to coach the

network. The weights in most neural nets is

each negative and positive, so providing

repressive influences to every input. As

every input enters the nucleus (blue circle)

it's increased by its weight. The nucleus then

sums of these new input values which

supplies United States of America the

activation (again a floating purpose range

which might be negative or positive). If the

activation is bigger than a threshold worth -

lets use the quantity one as Associate in

Nursing example - the somatic cell outputs a

sign. If the activation is a smaller amount

than one the somatic cell outputs zero. This

is typically called a step function as shown

in figure below:

A neuron can have any number of inputs

from one to n, where n is the total number of

inputs. The inputs may be

represented therefore as x1, x2, x3… xn. And

the corresponding weights for the inputs as

w1, w2, w3… wn. Now, the summation of the

weights multiplied by the inputs we talked

about above can be written as x1w1 + x2w2 +

x3w3 …. + xnwn, . So, the activation value is

 a = x1w1+x2w2+x3w3... +xnwn .

Fortunately there is a quick way of writing

this down which uses the Greek capital letter

sigma S, which is the symbol used by

mathematicians to represent summation.

Well, we have to link several of these

neurons up in some way. One way of doing

this is by organising the neurons into a

design called a feed forward network. It gets

its name from the way the neurons in each

layer feed their output forward to the next

layer until we get the final output from the

neural network. This is what a very simple

feed forward network looks like:

Each input is sent to every vegetative cell

within the hidden layer then each hidden

activation

0

output
 1

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2018]

58

layer’s vegetative cell’s output is connected

to each neuron within the next layer. There

will be any variety of hidden layers inside a

feed forward network however one is

typically enough to live up to for many

issues you may tackle. conjointly the

quantity of neurons I've chosen for the on

top of diagram was utterly absolute. There

will be any variety of neurons in every layer,

it all depends on the matter.

3.MODEL NEURONS: NEURODES

The building-block of computer-model

neural networks may be a process unit

known as a neurode, that captures several

essential options

of biological

neurons. In the

diagram, 3

neurodes square

measure shown,

which may

perform the

operation "AND",

ie, the output neurode can fireplace provided

that the 2 input neurodes square measure

each firing. The output neurode includes a

"threshold" worth (T) of 3/2 (ie, 1.5). If

neither or only 1 input neurode is firing, the

overall input to the output neurode are going

to be but one.5, and therefore the output

neurode won't fireplace. However, if each

input neurodes square measure firing, the

overall input of one+1=2 are going to be

bigger than the brink worth of 1.5, and

therefore the output neurode can fireplace.

Similarly, Associate in Nursing "OR"

operation are often enforced exploitation an

equivalent design, however dynamical the

brink worth to zero.5. during this case, the

output neurode fires provided that it receives

input from either or each neurodes.

The values in parenthesis (1) on the

connections between the neurodes square

measure weights of the connections, adore

the conjugation strength of vegetative cell

connections. In biological neural networks

the firing of a vegetative cell may result in

varied amount of

that vegetative

cell. Imagine,

for example, a

neuron

neurotransmitter

released at the

synapses of

with 3 axons leading to 3 pre-synaptic

terminals. One terminal releases

neurotransmitter from 20 vesicles, another

from 100 vesicles and the third from 900

vesicles. The synaptic strength (the weight)

of the second terminal is 5 times as great as

the first, everything else being equal. In the

neurodes of computer models, weights tend

to be values between -1 and +1. Notice that

in the examples shown, the weights could

have been (0.8) rather than (1) and the

results would be the same.

Now consider a more complex network, one

designed to do the logical operation

"EXCLUSIVE-OR" (XOR). The threshold

values are shown inside the neurode circles

and the weights are shown alongside

theconnections. Note the addition of a

neurode (the hidden neurode) between the

input and output neurodes. In an XOR

operation, the output neurode only fires if

one (but not both) of the input neurodes fire.

In this case, the hidden neurode will not fire

if only one input neurode fires. This will

cause the output neurode to fire, since +1 is

greater than the 0.5 threshold. But if both

input neurodes fire, the result is a total input

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2018]

59

of 1+1-2=0 to the output neurode. Since 0 is

less than the 0.5 threshold of the output

neurode, the output neurode will not fire.

The

solution shown is not the only possible

solution to the XOR problem in a simple

neurode network. There are, in fact,

infinitely many possible solutions. Two

more example solutions are shown. Negative

connection weights represent inhibitory

rather than excitatory weights (synapses).

Note that threshold values can also be less

than zero.

In these examples the relationships between

the thresholds, weights, inputs and outputs

can be analyzed in detail. But in neural

networks (both computer and biological)

with large numbers of inputs, outputs and

hidden neurodes (neurons), the task of

determining weights and threshold values

required to achieve desired outputs from

given inputs becomes practically impossible.

Computer models therefore attempt to train

networks to adjust their weights to give

desired outputs from given inputs. If

biological memory and learning are the

result of synapse strengths -- and

modifications of synapse strengths -- then

the computer models can be very instructive.

Computer neural network models are

described in terms of their architecture

(patterns of connection) and in terms of the

way they are trained (rules for modifying

weights). I will therefore classify my

descriptions into four categories:

(1) Perceptrons& Backpropagation,

(2) Competitive Learning, (3) Attractor

Networks and (4) Other Neural Network

Models.

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2018]

60

4 PERCEPTRONS& BACKPROPAGATION

The architecture of a Perceptron consists of

a single input layer of many neurodes, and a

single output layer of many neurodes. The

simple "networks" illustrated at the

beginning, to produce logical "AND" and

"OR" operations have a Perceptron

architecture. But to be called a Perceptron,

the network must also implement the

Perceptron learning rule for weight

adjustment. This learning rule compares the

actual network output to the desired network

output to determine the new weights. For

example, if the network illustrated gives a

"0 1 0" output when "0 1 1" is the desired

output for some input, all of the weights

leading to the third neurode would be

adjusted by some factor.

The Adaline is a modification of the

Perceptron, which substitutes bipolar

(-1/+1) for binary (0/1) inputs, and adds

"bias". But the most important modification

is the use of a delta learning rule. As with

the Perceptron, the delta rule compares

desired output to actual output to computer

 weight adjustment. But the delta rule

squares the errors and averages them to

avoid negative errors cancelling-out positive

ones. Adalines have been used to eliminate

echoes in phone lines for nearly 30 years.

Neural network research went through many

years of stagnation after Marvin Minsky and

his colleague showed that Perceptrons could

not solve problems such as the

EXCLUSIVE-OR problem. Several

modifications of the Perceptron model,

however, produced the Backpropagation

model -- a model which can solve XOR and

many more difficult problems.

Backpropagation has proven to be so

powerful that it currently accounts for 80%

of all neural network applications. In

Backprop, a third neurode layer is added

(the hidden layer) and the discrete

thresholding function is replaced with a

continuous (sigmoid) one. But the most

important modification for Backprop is the

generalized delta rule, which allows for

adjustment of weights leading to the

hidden layer neurodes in addition to the

usual adjustments to the weights leading to

the output layer neurodes. Using the

generalize delta rule to adjust the weights

leading to the hidden units is

backpropagating the error-adjustment.

5 COMPETITIVE LEARNING

The prototypic competitive learning ("self-

organizing") model is the Kohonen network

(named after the Finnish researcher who

pioneered the research). A Kohonen network

is a two-layered network, much like the

Perceptron. But the output layer for a two-

neurode input layer can be represented as a

two-dimensional grid, also known as the

"competitive layer". The input values are

continuous, typically normalized to any

value between -1 and +1. Training of the

Kohonen network does not involve

comparing the actual output with a desired

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2018]

61

output. Instead, the input vector is compared

with the weight vectors leading to the

competitive layer. The neurode with a

weight vector most closely matching the

input vector is called the winning neurode.

For example, if the input vector is (0.35,

0.8), the winning neurode might have weight

vector (0.4, 0.78). The learning rule would

adjust the weight vector to make it even

closer to the input vector. Only the winning

neurode produces output, and only the

winning neurode gets its weights adjusted.

In more sophisticated models, only the

weights of the winning neurode and its

immediate neighbors are updated.

After training, a limited number of input

vectors will map to activation of distinct

output neurodes. Because the weights are

modified in response to the inputs, rather

than in response to desired outputs,

competitive learning is called unsupervised

learning, to distinguish it from the

supervised learning of Perceptrons,

Adalines and Backpropagation. In

supervised learning, comparison is made

between actual outputs and desired outputs

supplied by an external supervisor. There is

no external supervisor in competitive

learning.

6 ATTRACTOR NETWORKS

The most notable attractor networks are the

Hopfield Network [12], the Boltzman

Machine [13] and the Bidirectional

Associative Memory (BAM). The Hopfield

Network can be represented in a number of

ways, all of which are somewhat equivalent.

The diagram on the left indicates that every

neurode has a connection with every other

neurode in two directions, but it omits the

detail that each neurode is also an input

neurode and an output neurode, as is shown

in the middle diagram. The diagram on the

right is called a Crossbar Network

representation of a Hopfield Network, and it

is a convenient tool when analyzing

connection weights as a matrix of numbers

The Hopfield Network is presented with an

input vector, and the input vector remains

active as the neurodes update their weights

one-by-one in sequence (usually more than

once for each neurode) until the output is

constant. Weights are updated on the basis

of the difference between input and output

for each individual neurode. This process of

arriving at the output is called relaxation or

annealing, and can be expressed as an

energy equation -- which is exactly what

was done by physicist John Hopfield who

conceived of this network.

The lower energy states are the "attractors"

of the network. The settling of the network

into its lowest energy state can be compared

to a ball rolling to the bottom of a hill. If the

hill has a hump, however, the ball may not

fall to its lowest energy state, but be caught

in a local minimum. The Boltzman

Machine is a modified Hopfield Network

that adds a "Boltzman temperature term"

("noise") to jostle the ball out of the local

minimum.

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2018]

62

REFERENCES

[1] Aleksander, Igor and H. Morton: An Introduction to

Neural Computing. Chapman and Hall, London, UK

1990.

[2] Gurney, Kevin: An Introduction to Neural Networks.

UCL Press, London, UK 1999.

[3] W. S. Mculloch and W. Pitts: A Logical calculus of the

ideas immanent in nervous activity. Bull. Math. Bio.

Phys. 5 p115-133 1943.

[4] D. O. Hebb: The organization of Behaviour: A

Neuropsychological Theory. New York: Wiley, 1949.

[5] Fausett, Laurene: Fundamentals of Neural Networks:

Architectures, Algorithms, and Applications. Prentice

Hall, NJ, USA 1994.

[6] Kartalopoulos, Stamatios: Understanding Neural

Networks and Fuzzy Logic: Basic Concepts and

Applications. IEEE Press, NJ, USA 1996.

[7] Rosenblatt, F. (1958), “The Perceptron: a Probabilistic

Model for Information Storage and Organization in the

Brain”, Psychological Review, Vol. 65, pp. 386–408.

[8] Stark, L., Okajima, M., Whipple, G. H., Computer

Pattern Identification Techniques:

Electrocardiographics Diagnosis, Comm. of the ACM,

5, 527-532, 1962.

[9] Widrow, B., and M. Hoff (1960), “Adaptive Switching

Circuits”, WESCON Convention Record, New York,

1960.

[10] Widrow, B., and M. Lehr (1990), “30 Years of

Adaptive Neural Networks: Perceptron, Madaline and

Backpropagation”, Proceedings of the IEEE, Vol. 78,

No. 9, pp. 1415–1442.

[11] Bonissone, Piero: “Soft Computing: The Convergence

of Emerging Reasoning Technologies” Soft Computing.

Springer-Verlag, Germany/USA 1997.

[12] J. J. Hopfield: Neural networks and physical systems

with emergent collective computational capabilities.

Proceedings National Academy of Sciences (USA)

79,p2554-2558, 1982.

[13] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski: A

learning algorithm for Boltzmann machines. Cognitive

Sci., 9 p147-169, 1985.

