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Abstract—Evolutionary computing method isa 

computing paradigm that originated in the biological 

word. There various techniques used by various 

researchers to recognize the face. In this paper we 

recognized the face using Soft computing method. 

 
1 NEURAL COMPUTING 

Artificial Neural Networks (ANN) is a 

computing paradigm that originated in the 

biological world. Neural Computation does 

not have to be the computation carried out 

by nerve cells. An artificial system can 

emulate a simplified version of a neural 

computational system. ANN is an example 

of such an artificial neural system. Even 

though the name ANN has been the most 

common but other names have been used 

synonymously as well. Examples of these 

names are Neural Computing, 

Connectionism, Parallel Distributed 

Processing, and Connection Science [1].  

The multidisciplinary nature of the field of 

neural networks and its origin in biological 

science makes it difficult to state a rigorous 

definition for the field and what it addresses. 

This is the same problem with Evolutional 

and Genetic Computing. However, few 

references have attempted such a definition. 

A definition given by Igor Aleksander and 

Helen Morton is given as follows. “Neural 

computing is the study of networks of 

adaptable nodes which, through a process of 

learning from task examples, store 

experiential knowledge and make it 

available for use” [1].  

 

ANNs have often been used as an alternative 

to the techniques of standard nonlinear 

regression and cluster analysis to carry out 

statistical analysis and data modeling. In 

addition, computer scientists and engineers 

have seen ANNs, as providing a new 

experimental paradigm for Parallel  

Distributed Processing, rather than the 

algorithmic paradigm that dominated the 

field of machine intelligence prior to the 

ANN revolution [2].  

Although scientists from various fields 

worked on the study of understanding and 

modeling of neuro-sciences, ANNs were 

actually realized in the 1940s. Warren 

McCulloch and Walter Pitts designed the 

first ANNs [3]. The first learning rule for 

ANNs was designed by Donald Hebb in 

McGill University [4]. In the 1950s and 

1960s, ANNs entered their first flowering 

era. The most remarkable implementations 

of that era were the development of the 

Perceptronsand the ADALINE algorithm. 

After that, there was a rather quiet period in 

the 1970s, regardless of the works of 

Kohonen, Anderson, Grossberg, and 

Carpenter. The 1980s witnessed the second 

revival of ANNs. Back-Propagation, 

Hopfield Nets, Neocognitron, and 

Boltzmann Machinewere the most 

remarkable developments of that era [5].  

An ANN is a computational structure 

designed to mimic biological neural 

networks. The ANN consists of 
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computational units called neurons, which 

are connected by means of weighted 

interconnections. The weight of an 

interconnection is a number that expresses 

the strength of the associated 

interconnection.  

The main characteristic of ANNs is their 

ability to learn. The learning process is 

achieved by adjusting the weights of the 

interconnections according to some applied 

learning algorithms. Therefore, the basic 

attributes of ANNs can be classified into 

Architectural attributes and Neurodynamic 

attributes [6]. The architectural attributes 

define the network structure, i.e., number 

and topology of neurons and their 

interconnectivity. The neurodynamc 

attributes define the functionality of the 

ANN.  

ANNs were developed in the 1960s after a 

series of developments, proposals, and 

implementations. The most remarkable 

foundational achievements are the work on 

Spontaneous Learning by Rosenbaltt in 

1959 [7], Competitive Learning by Stark, 

Okajima, and Whipple in 1962 [8], and 

ADALINE/MADALINE algorithms by 

Widrow and Hoff in 1960 [9, 10]. However, 

it is important to note that modeling a 

neuron mathematically has been a research 

problem for over a hundred years [6].  

2. SO, WHAT EXACTLY A NEURAL NETWORK 

IS? 

A neural network is mans crude means of 

making an attempt to simulate the brain 

electronically. therefore to grasp however a 

neural web works we tend to initial have a 

glance at however the previous grey 

substance will its business. 

Our brains square measure created of 

regarding a hundred billion small units 

known as neurons. every vegetative cell is 

connected to thousands of different neurons 

and communicates with them via chemistry 

signals. Signals returning into the vegetative 

cell square measure received via junctions 

known as synapses, these successively 

square measure situated at the top of 

branches of the vegetative cell cell known as 

dendrites. The vegetative cell endlessly 

receives signals from these inputs so 

performs to a small degree little bit of 

magic. What the vegetative cell will (this is 

over simplified i would add) is total up the 

inputs to itself in how so, if the top result's 

larger than some threshold price, the 

vegetative cell fires. It generates a voltage 

and outputs a signal along something called 

an axon. Just have a good look at the 

illustration and try to picture what is 

happening within this simple little cell.  

 

Neural networks are made up of many 

artificial neurons. An artificial nerve cell is 

solely associate electronically modelled 

biological nerve cell. what number neurons 

area unit used depends on the task at hand. It 

may well be as few as 3 or as several as 

many thousand. One optimistic man of 

science has even arduous wired a pair of 

million neurons along within the hope he 

will come back up with one thing as 

intelligent as a cat though the majority 

within the AI community doubt he are going 

to be thriving. There area unit many 

alternative ways that} of connecting  

artificial neurons along to make a neural 

network however I shall be concentrating on 

the foremost common which is termed a 

feed forward network. 
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Each input into the somatic cell has its own 

weight related to it illustrated by the red 

circle. A we have a tendency toight is just a 

floating purpose range and it's these we alter 

once we eventually return to coach the 

network. The weights in most neural nets is 

each negative and positive, so providing 

repressive influences to every input. As 

every input enters the nucleus (blue circle) 

it's increased by its weight. The nucleus then 

sums of these new input values which 

supplies United States of America the 

activation (again a floating purpose range 

which might be negative or positive). If the 

activation is bigger than a threshold worth - 

lets use the quantity one as Associate in 

Nursing example - the somatic cell outputs a 

sign. If the activation is a smaller amount 

than one the somatic cell outputs zero. This 

is typically called a step function as shown 

in figure below: 

 

A neuron can have any number of inputs 

from one to n, where n is the total number of 

inputs. The inputs may be 

represented therefore as x1, x2, x3… xn. And 

the corresponding weights for the inputs as 

w1, w2, w3… wn. Now, the summation of the 

weights multiplied by the inputs we talked 

about above can be written as x1w1 + x2w2 + 

x3w3 …. + xnwn,  . So, the activation value is 

  a = x1w1+x2w2+x3w3... +xnwn .  

Fortunately there is a quick way of writing 

this down which uses the Greek capital letter 

sigma S, which is the symbol used by 

mathematicians to represent summation. 

 

Well, we have to link several of these 

neurons up in some way. One way of doing 

this is by organising the neurons into a 

design called a feed forward network. It gets 

its name from the way the neurons in each 

layer feed their output forward to the next 

layer until we get the final output from the 

neural network. This is what a very simple 

feed forward network looks like: 

 

Each input is sent to every vegetative cell 

within the hidden layer then each hidden 

activation 
 

0 
 

output 
 1 
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layer’s vegetative cell’s output is connected 

to each neuron within the next layer. There 

will be any variety of hidden layers inside a 

feed forward network however one is 

typically enough to live up to for many 

issues you may tackle. conjointly the 

quantity of neurons I've chosen for the on 

top of diagram was utterly absolute. There 

will be any variety of neurons in every layer, 

it all depends on the matter. 

3.MODEL NEURONS: NEURODES 

The building-block of computer-model 

neural networks may be a process unit 

known as a neurode, that captures several 

essential options 

of biological 

neurons. In the 

diagram, 3 

neurodes square 

measure shown, 

which may 

perform the 

operation "AND", 

ie, the output neurode can fireplace provided 

that the 2 input neurodes square measure 

each firing. The output neurode includes a 

"threshold" worth (T) of 3/2 (ie, 1.5). If 

neither or only 1 input neurode is firing, the 

overall input to the output neurode are going 

to be but one.5, and therefore the output 

neurode won't fireplace. However, if each 

input neurodes square measure firing, the 

overall input of one+1=2 are going to be 

bigger than the brink worth of 1.5, and 

therefore the output neurode can fireplace. 

Similarly, Associate in Nursing "OR" 

operation are often enforced exploitation an 

equivalent design, however dynamical the 

brink worth to zero.5. during this case, the 

output neurode fires provided that it receives 

input from either or each neurodes. 

The values in parenthesis (1) on the 

connections between the neurodes square 

measure weights of the connections, adore 

the conjugation strength of vegetative cell 

connections. In biological neural networks 

the firing of a vegetative cell may result in 

varied amount of 

that vegetative 

cell. Imagine, 

for example, a 

neuron 

neurotransmitter 

released at the 

synapses of  

with 3 axons leading to 3 pre-synaptic 

terminals. One terminal releases 

neurotransmitter from 20 vesicles, another 

from 100 vesicles and the third from 900 

vesicles. The synaptic strength (the weight) 

of the second terminal is 5 times as great as 

the first, everything else being equal. In the 

neurodes of computer models, weights tend 

to be values between -1 and +1. Notice that 

in the examples shown, the weights could 

have been (0.8) rather than (1) and the 

results would be the same.  

 

 

 

 

 

 

Now consider a more complex network, one 

designed to do the logical operation 

"EXCLUSIVE-OR" (XOR). The threshold 

values are shown inside the neurode circles 

and the weights are shown alongside 

theconnections. Note the addition of a 

neurode (the hidden neurode) between the 

input and output neurodes. In an XOR 

operation, the output neurode only fires if 

one (but not both) of the input neurodes fire. 

In this case, the hidden neurode will not fire 

if only one input neurode fires. This will 

cause the output neurode to fire, since +1 is 

greater than the 0.5 threshold. But if both 

input neurodes fire, the result is a total input 
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of 1+1-2=0 to the output neurode. Since 0 is 

less than the 0.5 threshold of the output 

neurode, the output neurode will not fire.  

 

 

 

 

 

 

 

The 

solution shown is not the only possible 

solution to the XOR problem in a simple 

neurode network. There are, in fact, 

infinitely many possible solutions. Two 

more example solutions are shown. Negative 

connection weights represent inhibitory 

rather than excitatory weights (synapses). 

Note that threshold values can also be less 

than zero.  

 

In these examples the relationships between 

the thresholds, weights, inputs and outputs 

can be analyzed in detail. But in neural 

networks (both computer and biological) 

with large numbers of inputs, outputs and 

hidden neurodes (neurons), the task of 

determining weights and threshold values 

required to achieve desired outputs from 

given inputs becomes practically impossible. 

Computer models therefore attempt to train 

networks to adjust their weights to give 

desired outputs from given inputs. If 

biological memory and learning are the 

result of synapse strengths -- and 

modifications of synapse strengths -- then 

the computer models can be very instructive. 

Computer neural network models are 

described in terms of their architecture 

(patterns of connection) and in terms of the 

way they are trained (rules for modifying 

weights). I will therefore classify my 

descriptions into four categories: 

(1) Perceptrons& Backpropagation, 

(2) Competitive Learning, (3) Attractor 

Networks and (4) Other Neural Network 

Models. 
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4 PERCEPTRONS& BACKPROPAGATION 

The architecture of a Perceptron consists of 

a single input layer of many neurodes, and a 

single output layer of many neurodes. The 

simple "networks" illustrated at the 

beginning, to produce logical "AND" and 

"OR" operations have a Perceptron 

architecture. But to be called a Perceptron, 

the network must also implement the 

Perceptron learning rule for weight 

adjustment. This learning rule compares the 

actual network output to the desired network 

output to determine the new weights. For 

example, if the network illustrated gives a 

"0 1 0" output when "0 1 1" is the desired 

output for some input, all of the weights 

leading to the third neurode would be 

adjusted by some factor.  

The Adaline is a modification of the 

Perceptron, which substitutes bipolar  

(-1/+1) for binary (0/1) inputs, and adds 

"bias". But the most important modification 

is the use of a delta learning rule. As with 

the Perceptron, the delta rule compares 

desired output to actual output to computer 

 weight adjustment. But the delta rule 

squares the errors and averages them to 

avoid negative errors cancelling-out positive 

ones. Adalines have been used to eliminate 

echoes in phone lines for nearly 30 years.  

Neural network research went through many 

years of stagnation after Marvin Minsky and 

his colleague showed that Perceptrons could 

not solve problems such as the 

EXCLUSIVE-OR problem. Several 

modifications of the Perceptron model, 

however, produced the Backpropagation 

model -- a model which can solve XOR and 

many more difficult problems. 

Backpropagation has proven to be so 

powerful that it currently accounts for 80% 

of all neural network applications. In 

Backprop, a third neurode layer is added 

(the hidden layer) and the discrete 

thresholding function is replaced with a 

continuous (sigmoid) one. But the most 

important modification for Backprop is the 

generalized delta rule, which allows for 

adjustment of weights leading to the 

hidden layer neurodes in addition to the 

usual adjustments to the weights leading to 

the output layer neurodes. Using the 

generalize delta rule to adjust the weights 

leading to the hidden units is 

backpropagating the error-adjustment.  

 

5 COMPETITIVE LEARNING 

The prototypic competitive learning ("self-

organizing") model is the Kohonen network 

(named after the Finnish researcher who 

pioneered the research). A Kohonen network 

is a two-layered network, much like the 

Perceptron. But the output layer for a two-

neurode input layer can be represented as a 

two-dimensional grid, also known as the 

"competitive layer". The input values are 

continuous, typically normalized to any 

value between -1 and +1. Training of the 

Kohonen network does not involve 

comparing the actual output with a desired 
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output. Instead, the input vector is compared 

with the weight vectors leading to the 

competitive layer. The neurode with a 

weight vector most closely matching the 

input vector is called the winning neurode.  

 

For example, if the input vector is (0.35, 

0.8), the winning neurode might have weight 

vector (0.4, 0.78). The learning rule would 

adjust the weight vector to make it even 

closer to the input vector. Only the winning 

neurode produces output, and only the 

winning neurode gets its weights adjusted. 

In more sophisticated models, only the 

weights of the winning neurode and its 

immediate neighbors are updated.  

After training, a limited number of input 

vectors will map to activation of distinct 

output neurodes. Because the weights are 

modified in response to the inputs, rather 

than in response to desired outputs, 

competitive learning is called unsupervised 

learning, to distinguish it from the 

supervised learning of Perceptrons, 

Adalines and Backpropagation. In 

supervised learning, comparison is made 

between actual outputs and desired outputs 

supplied by an external supervisor. There is 

no external supervisor in competitive 

learning.  

6 ATTRACTOR NETWORKS 

The most notable attractor networks are the 

Hopfield Network [12], the Boltzman 

Machine [13] and the Bidirectional 

Associative Memory  (BAM). The Hopfield 

Network can be represented in a number of 

ways, all of which are somewhat equivalent. 

The diagram on the left indicates that every 

neurode has a connection with every other 

neurode in two directions, but it omits the 

detail that each neurode is also an input 

neurode and an output neurode, as is shown 

in the middle diagram. The diagram on the 

right is called a Crossbar Network 

representation of a Hopfield Network, and it 

is a convenient tool when analyzing 

connection weights as a matrix of numbers 

The Hopfield Network is presented with an 

input vector, and the input vector remains 

active as the neurodes update their weights 

one-by-one in sequence (usually more than 

once for each neurode) until the output is 

constant. Weights are updated on the basis 

of the difference between input and output 

for each individual neurode. This process of 

arriving at the output is called relaxation or 

annealing, and can be expressed as an 

energy equation -- which is exactly what 

was done by physicist John Hopfield who 

conceived of this network.  

The lower energy states are the "attractors" 

of the network. The settling of the network 

into its lowest energy state can be compared 

to a ball rolling to the bottom of a hill. If the 

hill has a hump, however, the ball may not 

fall to its lowest energy state, but be caught 

in a local minimum. The Boltzman 

Machine is a modified Hopfield Network 

that adds a "Boltzman temperature term" 

("noise") to jostle the ball out of the local 

minimum.  
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