
International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

63

AGENT BASED SOFTWARE CODE

COMPREHENDING

Ram Gopal Gupta
1
, Bireshwar Dass Mazumdar

2
,Kuldeep Yadav

3

1Research Scholar, Uttarakhand Technical University,
2Associate Professor, Institute of Engineering & Rural Technology

3Associate Professor, Department of CSE, COER

1rgmail@rediffmail.com,

2emailrgg@gmail.com

Abstract-A result, software systems remain subject to

changes and maintenance throughout their lifetime. It is

crucial to manage such changes, as a lot of effort and time

are required in order to keep software systems operational

and fit for purpose. Software comprehension is essential

for developing, maintain, and improving software. This is

particularly true of agent-based systems, in which the

actions of autonomous agents are affected by numerous

factors, such as events in dynamic environment, local

uncertain beliefs, and intentions of other agents. The best

alternative for software maintainers is to comprehend

source code, which is both costly and time consuming.

More specifically, 50–90% of the maintenance engineers’

time is reported to be spent on software code

comprehension. This paper focusing on agents based

software comprehension parameters and tools that support

the discovery and synthesis of information found in both

source code and software documents are an important issue

for the software maintenance research community

Keyword: software maintenance, cognitive parameters,

code comprehension, data mining, agent, visualization

tools, code comprehensions tools.

I. Introduction:-

Today major amount of programming work is

accomplished on sophisticated s/w applications

which we called Integrated Development

Environment (IDE). IDE are commonly favored

by programmers because of Rapid Application

Development (RAD). It provides programmers

some special tools like; Source Code Editor,

Build Tools, Debugger, Compiler or Interpreter,

Version Control System etc.

These functionalities present more than one

perspectives of the same program, which is in

development process. These representation forms

are known as Program Visualizations. It provides

programmers not to treat programs as Code

Textproduced as Program Entities, Which are

executed in conditions.

Program Visualizations are presented either in

textual or, graphical form and presents different

information about the program e.g. If there is

simultaneous use of both Unified Modeling

Language (UML) diagram and Flow control

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

64

diagram to tackle different perspectives of single

software project. These visualizations are used by

the programmer to debug a program. Different

programmers use these functionalities (Tools)

according to their interest, which depends on

factors like:-

#1) programming language expertise.

#2) adjustment with the IDE.

#3) personal preference.

 It means that effective usage of visualizations

depends over the skill of a programmer. These

skills are in generating and testing hypothesis

from the program output and visualization and

combination of strategic knowledge with his or,

her knowledge by the coordination of appropriate

visualizations and functional tools of the IDE.

Novice programmers having no knowledge of

IDE faces problem of understanding and using

IDE in skilled way. It is necessary to develop a

platform and training process for guiding these

novice programmers. In case of software code

comprehension the main emphasis is on

understanding the code written by others.

Majority of program or, code comprehension

research is focused on capturing the logical

(thinking) ways of programming through

comprehension models, instead of Eye Tracking

Methodologies or, Models. Recently researches

are mainly focused on Visual Attention Tool,

which is called Restricted Focus Viewer (RFV).

It may be called Eye Tracker. For this purpose

researchers are working on studying the

psychology of the programmers.

Text comprehension (Just & Carpenter, 1992)[38]

is important in research activities because of

reading and understanding the code whereas Text

and Diagram comprehension offers a cognitive

strategies and resulting mental representations.

II. Methods:-

There are two key strands of software code

comprehension research:-

(a) The first is Empirical Research which

strives for an understanding of Cognitive

processes that programmers use when

understanding programs.

(b) The second involves Technology

Research with a focus on developing

semi-automated tool support to improve

software code comprehension.

It provides a meta-analysis of how two strands of

research are related. During 1970’s various non-

technical and random methods were applied for

cognitive based code comprehension. Some

technical methods are evolved for cognitive based

code comprehension.

To understand and describe developer’s mental

representation, mental model was used. This

mental module was evolved from a cognitive

module.These plans and rules of programming

could support in developing cognitive model.

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

65

At the end A.I. BASED TECHNOLOGICAL

RESEARCH FOR CODE COMPREHENSION

was evolved from mental model.

The mental model encodes the programmer’s

current understanding of the program. It consists

of a specification of the program goals and the

implementation in terms of the data structures

and algorithms used.

In case of program plans three types of

comprehension process were used:-

(a)Top-down comprehension.

(b)Bottom-up comprehension.

(c)Systematic and as –needed comprehension.

(d)Integrated comprehension.

(a)Top-down comprehension:-

In case of Top-down comprehension (Brooks,

1983)[4] process starts with a hypothesis about

the general nature of the program. This initial

hypo is then refined subsidiary hypothesis.

Subsidiary hypothesis are refined and evaluated

in a depth first manner. Top-Down

comprehension (Soloway, 1984)[49] is used

when the code is familiar. It follows following

steps:-

 Knowledge Base is related to gathering

information from different servers connected

within a Network or, WAN (Ducassé, M., &

Emde, A. -M. (1988)) [15].

 Situation Model is related to situation arises

during code decoding process.

• In case of Normal way Reading of source

code, the code decoding and

comprehension process fluency is good.

• In case of Learning (Lexical Analysis) of

source code i.e. Dyslexic, the code

decoding fluency is poor whereas the

comprehension process is good.

• In case of Learning without training i.e.

Hyperlexic, the code decoding fluency is

good whereas the comprehension process

is poor.

• In case general program or, module

learning difficulties code decoding and

comprehension process fluency are both

poor.

III. Program Model is inter-related with

Program Assessment, Capacity,

Planning, Implementation and

Evaluation.

• Assessment of the program counts it’s

importance and valuation of code.

• Capacity of program means it’s impact

and scope.

• Planning of the program is used to give it

a proper structure and sequence of steps.

• Implementation of the program is to

decide area to implement, training and

size.

• Evaluation of the program is related to

program nature.

(b) Bottom-up comprehension:-

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

66

In case of Bottom-Up comprehension assume that

programmers first read code statements and then,

mentally chunk or, group these statements into

higher level abstractions. Itfollows reverse

process of Top Down comprehension. These

abstractions are aggregated further until a high-

level understanding of the program is attained

(Shneiderman, 1979)[26],

Shnaiderman and Msyer’s cognitive framework

differentiates between syntactic and semantic

knowledge of programs.

AccordingtoPenington (Penington,1987)[46],[47]

describes a Bottom up model. She observed that

programmers first develop control-flow

abstraction of a called Program Model.

Once the program model is fully assimilated the

situation model is develop. It encompasses

Knowledge about data-flow abstraction and

functional abstraction. The assimilation process

describes how the mental model evolves using

the programmer’s knowledge base together with

program so user code and documentation. It may

be top-down or, bottom-up depending on

programmer’s initial knowledge.

(c) Systematic and As-needed comprehension:-

Littman et al.[61] describes two comprehension

strategies –

(i) Systematic comprehension :-

Systematic is where a programmer systematically

reads through code in detail, looking at both the

control-flow and data-flow abstractions is used to

obtain a thourough understanding of the code.

(ii) As-needed comprehension:-

As-needed comprehension is the method where

the programmer only looks at the code related to

a particular task. Parts of the code are looked at

only when the programmer needs to understand

them. As-needed comprehension description

could be thought of as describing both checklist

and scenario defect detection methods gets

highlighted.

(Littman 1986)[61] observed that programmers

either systematically read the code in detail,

tracing through the control-flow and data -flow

abstraction in the program to gain a global

understanding of the program or, that they take an

as needed approach focusing only on the code

relating to a particular task at hand.

Subjects using a systematic strategy acquired

both static knowledge (information about the

structure of the program) and casual knowledge

(interactions between components in the program

when it is executed). This enabled them to form a

mental model of the program.

This strategy is considered as knowledge base

strategy.

(d) Integrated comprehension:-

Von Mayrhauser and Vans integrated the Top-

Down, Bottom-Up, Systematic and as needed

Comprehension strategies.

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

67

Program Comprehension Research Tools:-

The field of program comprehension research has

resulted in many diverse tools to assist in

program comprehension. Program comprehension

tools generally implement a reverse engineering

process. Basic activities in reverse engineering

process includes:-

 Extraction.

 Analysis.

 Presentation.

Extraction tools include parsers and data gathering

tools to collect both static and dynamic data.

Static data is obtained by extracting facts from

the source code. A Fact Extractor should be able

to determine what Artifacts the program defines,

uses, imports and exports as well as relationship

between those artifacts. The technologies

underlying fact extractors are based on techniques

from compiler construct- ion (Aho, 2000)[1] e.g.

Modern Fact Extractors include CAN , a fast

C/C++ extractor, from the Columbus reverse

engineering tool (Ferenc, 2004) and CPPX (Dean,

2001).

Dynamic data is obtained by examining and

extracting data from the run time behavior of the

program. Such data can be extracted through a

wide variety of trace exploration tools and

techniques (Hamou – Lha dj, 2004).

Analysis tools support activities such as clustering,

concept assignment, feature identification

(Eisenbarth, 2003) transformations, domain

analysis, slicing and metrics calculations. There

are numerous software techniques that can be

used during reverse engineering to identify

software components (Kosch Ka, 2000).

Dynamic analysis only a subset of the program

may be relevant but dynamic traces can be very

large posing significant challenges during the

analysis of the data.Static analysis can be used to

prune the amount of information looked at during

dynamic analysis (Systa, 2001).

IV. Presentation tools include Code editors,

Browsers, Hypertext viewers and

Visualizations.

Methods for evaluating comprehension tools

In many cases the comprehension tools

researchers using case studies. There have been

some usability experiments conducted to evaluate

program comprehension tools (Storey, 2000).

Two different types of available tools, inspection

and visualization.

V. Tools for Comprehension:-

The visualization tools are created for OOPs.

Both inspection and visualization tools may have

features that can help to support cognitive

strategies for program and code comprehension.

Note :-

Both inspection and visualisation tools may have

features that can help to support cognitive

strategies for program comprehension. Each tool

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

68

will compared to the criteria defined by Linos to

see if they offer comprehensive facilities.

(i) Inspection Tools:-

Inspection Process:-

Step (1):-Getting an overview of the project

description.

Step (2):-In the preparation step, each member of

the group works on their own and attempts to

gain an understanding of the documents which is

being provided.

Step (3):- In this step , it is used to check that all

problems that were raised in the inspection

process have been dealt with.

Note:- This inspection process is developed by

Fagan[14] in 1972 and then, updated by himself

in 1986[15].

VI. Inspection Tools and their features:-

Sl.

NO.

NAME TYPE FEATURES

1 ASSIST

(Asynchrono

us

or,Synchrono

us Software

Inspection

Tool)

[63],[64]

Distributed Defect finding

Aids, Enhanced

Document

representation,

Facility for

metric collection

and analysis,

provision of

facilities for

distributed

inspection,

provides online

checklists,

Generic software

inspection

template

2 Scrutiny [53] Distributed It mainly

supports

documents. It

inspect by

following the

steps

 Initiation

 Preparation

 Resolution

 Resolution

 Completion

3 ICICLE

(Intelligent

Code

Inspection in

a C Language

Environment)

[70]

Individual It supports

mainly C

language

constructs

through two

phase inspection

like ; individual

inspection and

meeting.

4 Collaborative

Software

Inspection

(CSI) [65]

Distributed It provides an

online inspection

environment by

favouring four

types of

collaborative

inspection

meeting such as;

same time and

place , same

time and

different place ,

different time

and same place ,

different time

and place. It

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

69

supports both

synchronous

(group meeting)

and

asynchronous

(individual

checking)

activities.

5 WiP [54] Distributed It attempts to

solve the

problem of

having a

scattered

inspection team

by utilizing

www and is

designed to

distribute the

documents to be

inspected. It

allows document

marking, search

documents,

allow selection

of checklists and

gather inspection

statistics. It

provides access

to users to find

source

documents and

checklists.

(ii) Visualization Tools:-

The visualization tools are created for OOPs. It

acts as an interface between two powerful

information processing systems i.e.

 The Human Mind.

 The Modern Computer.

It involves manipulating information, data and

knowledge and converting it into a visual

representation in more than one dimension, which

utilizes the human visual system.

Note:- This Visualisation process is developed by

Gershon et al.[17] in 1972 and then, updated by

himself in 1986[15].

Visualization Tools and their features:-

Sl.

NO.

NAME FEATURES

1 EasyCODE

(C++)

[72]

It is a PC based commercial

windows package from

Siemens AG Austria. It uses

structured program techniques

to visually display programs. It

is a improved version

XperCASE.

2 With Class 98

[67]

It is an Object oriented CASE

tool developed by MicroGold

software for Windows on PC.

The program allows the

construction of graphical

model in an Object Oriented

methodology and allows to

select from several OO

methods. It includes unified

method, Runbaugh method,

Coad Yourdon method, Booch

method , etc. With the use of

this designing of class

diagrams, detailing class

attributes and methods are

possible.

3 SNiFF + [73] It supports C,C++, Java,

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

70

Fortran program developing

environment. It provides

features including version and

configuration management,

project management, code

comprehension and debugging,

browsing document and

document building

management. It contains

filtering and visualization

techniques.

4 ISVis [56] It helps to visualize interaction

patterns in executing program

on Sun Solaris, SunOS and

IRIX platforms This program

is carry out large amount of

real information and able to

carry out abstractions, data

simplifications. It leads to

“Visualize interaction patterns

in program execution”

5 Look! [68] It is C++ debugging and

visualization tool available for

Windows, SunOS, Solaris and

AIX. It provides views of

Object creation relationship,

class clusters , Object

Networks , message Flow and

dynamic class views

VII. SCOPE OF RESEARCH:-

The cognitive models of software code

comprehension and debugging imposes several

questions from which we selected a few of these

questions for experimental investigation.

VIII. CONCLUSION:-

Code comprehension process is an approach of

understanding the cognitive and social aspects of

program comprehension using conventional

methods of agents as well as technical

support.Code comprehension plays a remarkable

role for software re-engineering.It is an A.I.

Based technique using the automated support of

software tools.It replaces any multi agent with

computer based Multi-agent System.

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

71

REFERENCES:-

[1] Aho A.V., Sethi R., and Ullman J.D. 2000. Compilers

: Principals, Techniques and Tools. Addison –

Wesley. BallT. And Eick S.G. 1996. Software

Visualization in the large. IEEE Computer 29(4): 33-

43.

[2] Creswell J.W. 1994 , Research Design, Qualitative

and Quantitative Approaches, SAGE Publications.

[3] Brooks F.P. 1987. No Silver Bullet :Essence and

accidents of software engineering. Computer,

20(4):10-19

[4] Brooks R. 1983. Towards a thoery of the

comprehension of computer programs. International

Journal on Man-Machine Studies, 18, 543-554

[5] A.S. Rao and M.P. Georgeff(1993) “A model-

theoretic approach to the verification of situated

reasoning systems” Proc. Of the 13
th

 International

Joint Conference on Artificial Intelligence, 318-324,

Chambery, France.

[6] Blackwell, A., Jansen, A., & Marriott, K. (2000).

Restricted Focus Viewer: A Tool for Tracking Visual

Attention. In M. Anderson, P. Cheng, & V. Haarslev,

Theory and Application of Diagrams (pp. 575-588).

[7] Brooks, R. (1983). Towards a Theory of the

Comprehension of Computer Programs.

International Journal Man-Machine Studies , 18,

543-554.

[8] Busemeyer, J. R., & Diederich, A. (2010). Cognitive

modeling. Los Angeles: Sage.

[9] Carney, R., & Levin, J. (2002). Pictorial Illustrations

Still Improve Students' Learning from Text.

Educational Psychology Review , 14 (1), 5-26.

[10] Cheng, P.-H., Lowe, R. K., & Scaife, M. (2001).

Cognitive Science Approaches to Understanding

Diagrammatic Representations. Artificial

Intelligence Rev. , 15, 79-94.

[11] Cox, R., & Brna, P. (1995). Analytical reasoning with

external representations: Supporting the stages of

selection, construction and use. Journal of Artificail

Intelligence in Education , 6 (2/3), 239-302.

[12] Crane, H. D. (1994). The Purkinje image eyetracker,

image stabilization, and related forms of stimulus

manipulation. Visual science and engineering:

Models and applications , 15-89.

[13] Cross, J. H., Hendrix, D., Umphress, D., Barowski,

L., Jain, J., & Montgomery, L. (2009). Robust

Generation of Dynamic Data Structure

Visualizations with Multiple Interaction Approaches.

ACM Transactions on Computing Education , 9 (2).

[14] Cutrell, E., & Guan, Z. (2007). What are you looking

for?: an eye-tracking study of information usage in

web search. ACM conference on Human factors in

computing systems, (pp. 407-416). New York, NY,

USA.

[15] Ducassé, M., & Emde, A. -M. (1988). A review of

automated debugging systems: Knowledge, strategies

and techniques. International Conference of

Software Engineering, (pp. 162–171). Singapore.

[16] Duchowski, A. (2007). Eye tracking methodology:

Theory and practice (Second ed.). Springer.

[17] Gentner, D. (1989). The mechanisms of analogical

learning. In S. Vosniadou, & A. Ortony, Similarity

and Analogical Reasoning (pp. 197-241). Cambridge:

Cambridge University Press, England.

[18] Romero, P., Cox, R., du Boulay, B., & Lutz, R.

(2002a). Visual attention and representation

switching during Java program debugging: a study

using the Restricted Focus Viewer. Diagrammatic

Representation and Inference: Second International

Conference, Diagrams (pp. 221-235). Callaway

Gardens, GA, USA: Springer Verlag.

[19] Romero, P., du Boulay, B., Cox, R., & Lutz, R.

(2003b). Java debugging strategies in

multirepresentational environments. 15th Annual

Workshop of the Psychology of Programming

Interest Group (PPIG). Keele University, UK.

[20] Romero, P., Lutz, R., Cox, R., & Du Boulay, B.

(2002b). Co-ordination of multiple external

representations during Java program debugging.

Empirical Studies of Programmers symposium of the

IEEE Human Centric Computing Languages and

Environments Symposia. Arlington, VA.

[21] Schnotz, W., & Bannert, M. (2003). Construction

and interference in learning from multiple

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

72

representation. Learning and Instruction. (13), 141–

156.

[22] Schnotz, W., & Bannert, M. (1999). Support and

interference effects in learning from multiple

representations. European Conference on Cognitive

Science , 447-452.

[23] Shah, P., & Carpenter, P. (1995). Conceptual

limitations in comprehending line graphs. Journal of

Experimental Psychology , 124, 337-370.

[24] Shah, P., & Hoeffner, J. (2002). Review of graph

comprehension research: Implications for

instruction. Educational Psychology Review , 14 (1),

47-69.

[25] Shah, P., Mayer, R. E., & Hegarty, M. (1999).

Graphs as aids to knowledge construction. Journal of

Educational Psychology , 91, 690-702.

[26] Shneiderman, B., & Mayer, R. (1979).

Syntactic/Semantic Interactions in Programmer

Behavior: A Model and Experimental Results.

International Journal of Computer and Information

Sciences , 8 (3), 219-238.

[27] Sime, J. (1996). An investigation into teaching and

assesment of qualitative knowledge in engineering.

European Conference on Artificial Intelligence on

Education , 240-246.

[28] Soloway, E., Adelson, B., & Ehrlich, K. (1988).

Knowledge and Processes in the Comprehension of

Computer Programs. The Nature of Expertise , 129-

152.

[29] Soloway, E., Lampert, R., Letovsky, S., Littman, D.,

& Pinto, J. (1988, November 31). Designing

documentation to compensate for delocalized plans.

Communications ACM , pp. 1259-1267.

[30] Green, T. R. (1989). Cognitive dimensions of

notations. People and Computers .

[31] Carney, R., & Levin, J. (2002). Pictorial Illustrations

Still Improve Students' Learning from Text.

Educational Psychology Review , 14 (1), 5-26.

[32] Cheng, P.-H., Lowe, R. K., & Scaife, M. (2001).

Cognitive Science Approaches to Understanding

Diagrammatic Representations. Artificial

Intelligence Rev. , 15, 79-94.

[33] Gernsbacher, M. A., Varner, K. R., & Faust, M.

(1990). Investigating differences in general

comprehension skill. Journal of Experimental

Psychology: Learning, Memory, and Cognition (16),

430-445.

[34] Gilmore, D. J. (1991). Models of debugging. Acta

Psychologica , 78 (1-3), 151-172.

[35] Grubb, P., & Takang, A. (2003). Software

Maintenance: Concepts and Practice. Singapore:

World Scientific Publishing.

[36] Johnson-Laird, P. N. (1983). Mental Models:

towards a cognitive science of language, inferences

and consciousness. Cambridge: Cambridge

University Press.

[37] Just, M. A., & Carpenter, P. A. (1992). A capacity

theory of comprehension:. Psychological Review (98),

122–149.

[38] Katz, I., & Anderson, J. (1987). Debugging: An

analysis of bug location strategies. Human-

Computer Interaction , 3 (4), 351–399.

[39] Kintsch, W., & Van Dijk, T. A. (1975). Comment on

se rappelle et on resume des histoires,. In Language

(40), 98-116.

[40] Mautone, P. D., & Mayer, R. E. (2007). Cognitive

aids for guiding graph comprehension. Journal of

Educational Psychology , 99 (3), 640-652.

[41] Mayer, R. E. (1996). Learning strategies for making

sense out of expository text: The SOI model for

guiding three cognitive processes in knowledge

construction. Educational Psychology Review (8),

357-371.

[42] Narayanan, H., & Hegarty, M. (1998). On designing

comprehensible interactive hypermedia manuals.

International Journal of Human Computer

Studies , 48 (2).

[43] Narayanan, N. H., & Hegarty, M. (2002). Multimedia

design for communication of dynamic information.

International Journal of Human Computer

Studies. , 57, 279-315.

[44] Nathan, M. J., Kintsch, W., & Young, E. (1992). A

Theory of Algebra-Word-Problem Comprehension

and Its Implications for the Design

of Learning Environments. Cognition & Instruction ,

9 (4), 329.

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

73

[45] Pennington, N. (1987a). Comprehension strategies in

programming. Comprehension strategies in

programming , 100 – 113.

[46] Pennington, N. (1987b). Stimulus Structures and

Mental Representations in Expert Comprehension of

Computer

a. Programs. Cognitive Psychology , 19, 295-

341.

[47] Romero, P., Cox, R., du Boulay, B., & Lutz, R.

(2003a). A survey of representations employed in

object-oriented programming environments.

Journal of Visual Languages and Computing , 14 (5),

387-419.

[48] Soloway, E., Adelson, B., & Ehrlich, K. (1988).

Knowledge and Processes in the Comprehension of

Computer Programs. The Nature of Expertise

, 129-152.

[49] Trabasso, T., & Van den Broek, P. (1985). Causal

Thinking and the Representation of Narrative

Events. Journal of Memory and Language

(24), 612-630.

[50] Van Oostendorp, H., & Goldman, S. R. (1998). The

Construction of Mental Representations During

Reading. Mahwah, N.J.: L. Erlbaum

Associates.

[51] G. Canfora,L. Mancini and M. Tortorella, A

workbench for program comprehension during

software maintenance , 4
th

 Workshop on Program

Comprehension, IEEE Computer Society Press, pp.

30-39, 1996.

[52] J.W. Gintell, J.Arnold , M. Houde, J. Kruszelnicki,

R. McKenney and G. Memmi, Scrutiny : A

Collaborative Inspection and Review System,

in Proceedings of the Fourth European Software

Engineering Conference, Garwisch – Partenkirchen,

 Germany, September 1993.

[53] L. Harjumaa and I. Tervonen, A WWW –based Tool

for Software Inspection, in 31
st
 Hawaii International

Conference on Systems Sciences, Volume III , pp.

379-388, 1998.

[54] IBM, Jinsight, http://www.alphaworks.ibm.com

[55] D.F. Jerding, ISVis,

http://www.cc.gatech.edu/morale/tools/isvis/isvis.htm

l.

[56] P.K. Linos, A Preliminary Report on Program

Comprehension Tools (PCT’s) , Tennessee

Technological University ,

 http://www.csc.tntech.edu/~linos/pcts.html.

[57] D.C. Dennett (1987) “The Intentional Stance” The

MIT Press.

[58] G. Weiss (1999) “Multi- Agent Systems” MIT Press.

[59] M. Wooldridge (1997) “Agent –Based Software

Engineering “ IEEE Proc. On Software Engineering,

144(1) 26-37.

[60] D.C. Littman, J. Pinto, S. Letovsky and E. Soloway,

Mental models and software maintenance, In

Empirical Studies of Programmers , pp. 80-98,

Ablex Publishing Corporation, 1986.

[61] F. Macdonald, J. Miller, A. Brooks, M. Roper and

M. Wood. A Review of Tool Support for Software

Inspection, In Proceedings of the Seventh

International Workshop on Computer Aided Software

Engineering, pages 340-349, July 1995.

[62] F. Macdonald and J. Miller, Automated Generic

Support for Software Inspection, 10
th

 International

Quality Week, San Francisco, 27-30 May,

1997.

[63] F. Macdonald and J. Miller, A Software Inspection

Process Definition Language and Prototype Support

Tool, Software Testing, Verification and

Reliability, Vol. 7, No. 2, pp. 99-128, June 1997.

[64] V. Mashayekhi, J.M. Drake, W. Tsai and J. Riedl,

Distributed Collaborative Software Inspection, IEEE

Software , Vol. 10, No. 5, September 1993.

[65] A. Von Mayrhauser and A. Marie Vans, Program

Comprehension During Software Maintenance and

Evolution, IEEE Computer, Vol. 28, No. 8, August

1995.

[66] MicroGold Software Inc., With Class 98,

http://www.microgold.com.

[67] Objective Software Technology Ltd., Dynamic

Visualization of Programs written in C++ ,

http://www.objectivesoft.com.

[68] D.J. Robson, K.H. Bennett, B.J. Cornelius and M.

Munro, Approaches to Program Comprehension,

Journal of Systems Software, Vol. 14, No. 2,

pp. 79-84, February 1991.

http://www.alphaworks.ibm.com/
http://www.cc.gatech.edu/morale/tools/isvis/isvis.html
http://www.cc.gatech.edu/morale/tools/isvis/isvis.html
http://www.csc.tntech.edu/~linos/pcts.html
http://www.microgold.com/
http://www.objectivesoft.com/

International Conference on Advanced Computing (ICAC-2018)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad 2018

74

[69] V. Sembugamoorthy and L. R. Brothers, ICICLE:

Intelligent Code Inspection in a C Language

Environment. In Proceedings of the 14
th

 Annual

Computer Software and Applications Conference,

pages 146-154, October 1990.

[70] B. Shneiderman, Software Psychology : Human

Factors in Computer and Information Systems,

Wintrop Publishers, Inc.,1980.

[71] Siemens AG Austria, EasyCODE,

http://www.siemens.at/~easy/easy/en/easycode.htm .

[72] SNiFF+, Release 2.4, User’s Guide, TakeFive

Software, http://www.takefive.com , January 27th ,

1998.

[73] P. Young, Program Comprehension, Visualisation

Research Group, Center for Software Maintenance,

University of Durham, 1996.

http://www.siemens.at/~easy/easy/en/easycode.htm
http://www.takefive.com/

