
International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2019]

314

A Black-Box Methodology for Probing Business

Logic Vulnerabilities in Modern Day Web

Applications
Adebanjo A Falade

1
, Neeraj Kumari

2

College of Computing Science & Information Technology TMU Moradabad 244001, Uttar Pradesh, INDIA

1 faladeadebanjo@gmail.com
2 neeraj.computers@tmu.ac.in

Abstract— in a web application, there are three vital security

properties that should be reviewed; input validation, state

integrity and logic correctness. The failure of web applications in

passing these reviews is the main cause of vulnerabilities and

successful exploitation.

Keywords— Web Application, Modern Day, Black Box, business

I. INTRODUCTION

While a significant amount of attention have been

given to code-based and syntax-based attacks on

web applications such as SQL Injection and Cross

Site Scripting (XSS) [2], there exists, another class

of attacks not easy to categorize or classify and can

be seen as more of an art [2]. This attack has been

referred to as business logic attack.

As a large number of business processes move

into web-based technologies, web applications have

become the core system for effecting business

processes over the internet [2]. Business logic

attacks take advantage of the ability of these web

applications to manage important functions like

user interaction, application security, application

state and performance [3]. As business processes

are specific to a particular organization, thus the

business logic is specific to each web application

and business logic attacks are also peculiar to their

specific targets.

The purpose of this paper is to give an overview

of business logic attack vectors and a methodology

that can be used to access the business logic of web

applications from an attacker point of view.

Business logic vulnerabilities have mostly been

realized only after it has been attacked, and with the

wide variety of this form of attack, the full extent of

its reach may never be known. This proposed

methodology is based on a comprehensive study of

the patterns of known attack vectors whilst

providing insight on addressing the main cause of

the vulnerability – faulty business logic.

II. THE ISSUE

Business logic attacks are becoming a more

grievous issue in web application attacks as they are

deeply tied into the company's business process. To

find a lasting solution to these attacks, an

understanding into the complexity of logical flaws

and methods of attacking these vulnerabilities is

needed. This will be discussed according to the

selected studies [1], [3], [4] and [5].

III. THE COMPLEXITY OF LOGIC

FLAWS

For every distinct feature added during web

application development, the security design for the

web application gets more complicated. The

complication lies greater with ensuring logical

correctness of the web application which makes

International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2019]

315

sure that everything is executed correctly as

intended by the developers.

According to the logic correctness property

proffered by [1],

“Users can only access authorized information and

operations and are enforced to follow the intended

workflow provided by the web application”

A web application, implementing business

processes, is a complex application of many lines of

code (which are error-prone), frameworks and

components (including third party programs or

extensions, for example, Facebook games), all

working together to achieve the business

requirements behind the development of the web

application [1]. With the complexity of these

business processes being implemented by web

applications, the complexity of logic flaws that may

exist, grows.

IV. UNDERSTANDING BUSINESS LOGIC

ATTACK VECTORS

Logic vulnerabilities move beyond banking or

commerce web applications to any other web

application effecting a business process and will

require knowledge of the application, the business

process and the technology behind these web

applications to successfully exploit. Business logic

attack vectors have been collated from [3], [4], [5]

to reveal attack pattern.

Abusing Workflows:

Abusing the web applications’ workflow is

common amongst logical based attacks as they are

typically controlled by redirects and page transfers.

For example, in the normal workflow of an

application from A to B to C, an attacker to skip the

straight line from A to C or go back to A from C [4].

A few techniques proffered by [4] for abusing

workflows include;

a) Changing requests in a code path from

HTTP POST to GET or vice versa.

b) Going through steps out of order or

skipping steps that will normally verify or

validate an action or information

c) Repeating a step or series of steps

d) Performing an unexpected action

A good example set by [3:10] explained how a

user could go back during a wire transfer and

change discount values after the last step with a

valid token has been completed, giving that change

in value, the same valid token and a valid,

'unauthorized' discount.

Exploit policies and practices:

Inadequacies with the web applications’ policies

and practices expose the web application to

business logic attacks. A website may comply with

all policies but may remain insecure because

policies are not made with all aspects of security in

mind [4]. For example, in banks, the U.S

government established that records should be kept

of any financial transaction that exceeds a daily

aggregate limit of $10,000 [6] to identify money

laundering and other suspicious activity. A money

launderer can instead handle transactions as large as

$9,876, lower than the limit as specified in the

policy and thus, such transactions may go on

undetected for a while as the web application is not

obliged to flag such events.

Similarly, in 2008, a man was convicted of

defrauding Apple of 9,000 iPod shuffles [7] by

exploiting their policy which states that,

“You will be asked to provide a major credit card to

secure the return of the defective iPod shuffle. If

you do not return th e defective iPod shuffle to

International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2019]

316

Apple within 10 business days of receiving your

replacement, Apple will charge you for the

replacement.” [16]

He successfully exploited this by requesting

replacement using credit cards which were just past

their limit. These cards were valid, even if they

could not be charged later on, and thus obeyed the

policy.

However, not all attacks concerning policy

bypass is for financial gain or money laundering as

evident in the Time Magazine online poll

manipulation case in April 2009 [8]. First, the

attackers exploited a business policy of “one vote

equals one person” because the website had no rate

limit, neither authentication nor validation

mechanism. Later, Time added counter-measures

which included authentication and validation using

a salted hash. However, another flaw appeared as

the salt was embedded in the client-side Adobe

Flash application [9] and again it was possible to

manipulate the votes.

There are other examples just like the above

examples in [4], but it is peculiar to the

organization’s policies/practices which are always

prone to loopholes, and these loopholes are the

vulnerabilities [5].

Induction:

Induction has to do with inference from

information provided within the code and behaviour

of the web application. It is possible for an attacker

to carry out some form of induction from suspicious

easily guessable/predictable parameter names and

predict, forge or manipulate legitimate requests.

Parameter names in most HTTP GET and POST

requests in the form of name/value pairs, XML,

JSON or Cookies are guessable, predictable and can

be tampered with, as a result. Sometimes, this may

require a combination of logical guessing, brute-

forcing and creative tampering to decipher the logic.

Below are useful attack vectors of induction:

V. Authentication parameters and

privilege escalation:

Because applications can manage access control

lists and privileges, any authenticated user has

access to some internal parts of the application but

if authorization implementation is weak, it could

likely include problems such as accessing another

user’s account or acquiring greater permissions than

what was originally assigned at login. For example,

if an application passes ACLs as cookies at time of

authentication, this information can be tampered

and exploited. A certain parameter becomes a target

if the parameter name suggests ACL or permissions.

The target value is now evaluated, predicted and

tampered. The value to be tampered may be hex,

binary, string, etc and tampering can involve

changing bit patterns (1 to 0) or permission flags (Y

to N, R to W) [3].

Critical Parameter Manipulation and Access to

Unauthorized Information/Content:

When the business logic of an application is

processing parameters such as name-value pairs

(which are guessable and can be tampered with),

without proper validation, this allows a malicious

user to perform unauthorized functions. For

example, a banking application, after authentication,

allows the user to request authorized functions and

while making these requests, some parameters are

being supplied to the application such as the

“accountid” parameter. If this parameter is easily

guessable, then an attacker can successfully inject

another user’s accountid. Also if the application

does not do a validity check to map the existing

session to the original logged in account, then

another user’s information gets disclosed [3]. A

similar example is the Binary.com privilege

escalation case [10] where the PIN parameter was

visible in an <iframe> tag. Guessing another user’s

PIN was enough to get into that user’s account

without proper validation [5].

International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2019]

317

c. Developer’s cookie tampering and

business process/logic bypass:

This is an easy way to create a logical bypass to

perform functions ordinarily not open to the

malicious user. When authentication occurs, to

maintain the state over HTTP the developer may

decide to set cookies in the browser. This way, the

cookies can be tampered while it is being passed to,

for example, upgrade membership from silver to

platinum [3].

VI. METHODOLOGY FOR ATTACKING

BUSINESS LOGIC VULNERABILITIES

IN WEB APPLICATIONS

This proposed methodology is a black-box

methodology at its preliminary stage that focuses on

testing for most common business logic

vulnerabilities and ways of exploiting them. This is

done with no prior knowledge of the system or no

information provided by the organization. The

methodology is divided into 4 phases:

1. Profiling phase

2. Analysis phase

3. Test/Attack phase

4. Evaluation phase

Fig.1: Proposed Methodology for Attacking

Business Logic Vulnerabilities

VII. CONCLUSION AND

RECOMMENDATION

This proposed methodology shows how business

logic vulnerabilities can be discovered and attacked.

In essence, it shows how it can be tested for.

Protecting an application against business logic

attacks can be daunting as every aspect of the

application needs to be considered as a potential

attack surface. Business logic attacks is an art that

demands creativity to detect and exploit, however,

fixing the problem may not be as easy as patching a

component (evident by the complex nature of

business logic flaws) and so, reiterations of the

methodology is necessary.

An extensive testing of the methodology is

recommended as this aspect was not covered by this

paper.

REFERENCES

[1] Xiaowei Li and Yuan Xue (2011). A Survey on

Web Application Security. Department of

Electrical Engineering and Computer Science.

Vanderbilt University. [Retrieved 21 March,

2017].

[2] Erik Couture, (2013).Web Application Injection

Vulnerabilities. A Web App’s Security Nemesis?

GIAC (GWAPT) Gold Certification. [Retrieved

21 March, 2017].

[3] Rapid7 Whitepaper, (2015). Top 10 Business

Logic Attack Vectors: Attacking and Exploiting

Business Application Assets and Flaws –

Vulnerability Detection to Fix. [Retrieved 21

March, 2017].

[4] Mike Shema, 2010. Seven Deadliest Web

Application Attacks. The Seven Deadliest

Attacks Series. Syngress Burlington, [Retrieved

21 March, 2017].

[5] Peter Yaworski, (2016). Web Hacking 101: How

to Make Money Hacking Ethically. [Retrieved

21 March, 2017.

International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2019]

318

[6] "FinCEN's Mandate From Congress |

FinCEN.gov", Fincen.gov, 2017. [Online].

Available:

https://www.fincen.gov/resources/fincens-

mandate-congress. [Accessed: 25 April, 2017].

[7] "InformationWeek - iPod Repairman Charged

With Defrauding Apple",

Informationweek.com, 2017.

[Online].Available:http://www.informationweek.

com/desktop/ipod-repairman-charged-with-

defrauding-apple/d/d-id/1077846?print=yes.

[Accessed: 25 April, 2017].

[8] E. Schonfeld, "Time Magazine Throws Up Its

Hands As It Gets Pwned By 4Chan",

TechCrunch, 2017.

[Online].Available:https://techcrunch.com/2009/

04/27/time-magazine-throws-up-its-hands-as-it-

gets-pwned-by-4chan/.[Accessed: 25 April,

2017].

[9] "Hackers stuff ballot box for Time Magazine's

top 100 poll", Theregister.co.uk, 2017. [Online].

Available:

https://www.theregister.co.uk/2009/04/17/time_t

op_100_hack/. [Accessed: 25 April, 2017].

[10] "Binary.com disclosed on HackerOne:

login to any user's cashier...", HackerOne,

2017. [Online].

Available:https://hackerone.com/reports/98247.

[Accessed: 25 April, 2017].

[11] Noa Bar-Yosef, 2009. Business Logic

Attacks – BATs and BLBs. The OWASP

Foundation.

https://www.owasp.org/images/2/27/BNL09_O

WASP_Benelux_2009,_Business_Logic_Attack

s_-_v2.pdf. [Retrieved 21 March, 2017].

[12] "Business Logic Attacks",

 Ciphertech.com.tw, 2017.

 [Online]Available

http://www.ciphertech.com.tw/index.php/impervaw

a-kbinfo/451-business-logic-attacks. [Accessed:

26 April, 2017].

[13] “Shopify disclosed on HackerOne: An

administrator without any...", HackerOne,

2017. [Online]. Available:

https://hackerone.com/reports/100938.

[Accessed: 26 April, 2017].

https://www.owasp.org/images/2/27/BNL09_OWASP_Benelux_2009,_Business_Logic_Attacks_-_v2.pdf
https://www.owasp.org/images/2/27/BNL09_OWASP_Benelux_2009,_Business_Logic_Attacks_-_v2.pdf
https://www.owasp.org/images/2/27/BNL09_OWASP_Benelux_2009,_Business_Logic_Attacks_-_v2.pdf

