
International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) , Teerthanker Mahaveer University , Moradabad [2019]

351

Progressive Web Apps
Mohd Aamir

College of Computing Sciences and Information Technology,

 Teerthanker Mahaveer University, Moradabad, India

aamir2expert@hotmail.com

I. INTRODUCTION

Progressive web applications (PWAs) are web

applications that load like regular web pages or

websites but can offer the user functionality such as

working offline, push notifications, and device

hardware access traditionally available only to

native applications. PWAs combine the flexibility

of the web with the experience of a native

application.

II. POPULARITY

Progressive Web Apps are user experiences that

have the reach of the web, and are:

Reliable - Load instantly, even in uncertain

network conditions.

Fast - Respond quickly to user interactions with

silky smooth animations and no janky scrolling.

Engaging - Feel like a natural app on the device,

with an immersive user experience.

This new level of quality allows Progressive

Web Apps to earn a place on the user's home screen.

Fig. 1 Positive response of PWAs to Businesses

III. HISTORY

In 2015, designer Frances Berriman and Google

Chrome engineer Alex Russell coined the term

"progressive web apps" to describe apps taking

advantage of new features supported by modern

browsers, including service workers and web app

manifests, that let users upgrade web apps to

progressive web applications in their native

operating system (OS).

IV. TECHNOLOGIES BEHIND

A. Manifest

The web app manifest is a W3C specification

defining a JSON-based manifest to provide

developers a centralized place to put metadata

associated with a web application including:

1. The name of the web application

2. Links to the web app icons or image objects

3. The preferred URL to launch or open the web

app

4. The web app configuration data for a number

of characteristics

5. Declaration for default orientation of the web

app

6. Enables to set the display mode e.g. full

screen

This metadata is crucial for an app to be added to

a home screen or otherwise listed alongside native

apps.

B. AppCache (obsolete)

An earlier technology to support offline use of

the web. It works adequately for the use case it was

designed for (single-page application), but fails in

problematic ways for wikis and other multi-page

apps. Currently supported by major browsers and in

International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) , Teerthanker Mahaveer University , Moradabad [2019]

352

use for years by some sites, but will eventually be

removed.

C. Service workers

A service worker is an event-driven worker

registered against an origin and a path. It takes the

form of a JavaScript file that can control the web-

page/site that it is associated with, intercepting and

modifying navigation and resource requests, and

caching resources in a very granular fashion to give

you complete control over how your app behaves in

certain situations (the most obvious one being when

the network is not available).

Service workers essentially act as proxy servers

that sit between web applications, the browser, and

the network (when available). They are intended,

among other things, to enable the creation of

effective offline experiences, intercept network

requests and take appropriate action based on

whether the network is available, and update assets

residing on the server. They will also allow access

to push notifications and background sync APIs.

A service worker is run in a worker context: it

therefore has no DOM access, and runs on a

different thread to the main JavaScript that powers

your app, so it is not blocking. It is designed to be

fully async; as a consequence, APIs such as

synchronous XHR and localStorage can't be used

inside a service worker.

Service workers only run over HTTPS, for

security reasons. Having modified network requests,

wide open to man in the middle attacks would be

really bad.

Technically, service workers provide a scriptable

network proxy in the web browser to manage the

web/HTTP requests programmatically. The service

workers lie between the network and device to

supply the content. They are capable of using the

cache mechanisms efficiently and allow error-free

behaviour during offline periods.

D. Web Workers

Allows a web app to run multiple threads of

(JavaScript) code simultaneously. Thus, long

activities can be moved off the user-interface thread,

keeping responses snappy. They have a close

relationship with Service Workers, but are more

widely supported.

E. WebAssembly

Allows precompiled code to run in a web browser,

at near-native speed. Thus, libraries written in

languages such as C can be added to web apps. Due

to the cost of passing data from JavaScript to

WebAssembly, near-term uses will be mainly

number-crunching (such as voice recognition and

computer vision), rather than whole applications.

F. Indexed Database API

Indexed Database API is a W3C standard API for

interacting with a NoSQL database. The API is

supported by modern browsers and enables storage

of JSON objects and any structures representable as

a string.

G. Web Storage

Web Storage is a W3C standard API that enables

key-value storage in modern browsers. The API

consists of two objects, sessionStorage (that enables

session-only storage that gets wiped upon browser

session end) and localStorage (that enables storage

that persists across sessions).

H. Application shell architecture

Some progressive web apps use an architectural

approach called the App Shell Model. For rapid

loading, service workers store the Basic User

Interface or "shell" of the responsive web design

web application. This shell provides an initial static

frame, a layout or architecture into which content

can be loaded progressively as well as dynamically,

allowing users to engage with the app despite

varying degrees of web connectivity. The shell can

International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) , Teerthanker Mahaveer University , Moradabad [2019]

353

be stored locally in the browser cache of the mobile

device.

V. ABILITIES OF PWAS

Progressive — Work for every user, regardless of

browser choice because they're built with

progressive enhancement as a core tenet.

Responsive — Fit any form factor: desktop,

mobile, tablet, or forms yet to emerge.

Connectivity independent — Service workers

allow work offline, or on low quality networks.

App-like — Feel like an app to the user with app-

style interactions and navigation.

Fresh — Always up-to-date thanks to the service

worker update process.

Safe — Served via HTTPS to prevent snooping

and ensure content hasn't been tampered with.

Discoverable — Are identifiable as “applications”

thanks to W3C manifests and service worker

registration scope allowing search engines to find

them.

Re-engageable — Make re-engagement easy

through features like push notifications.

Installable — Allow users to “keep” apps they

find most useful on their home screen without the

hassle of an app store.

Linkable — Easily shared via a URL and do not

require complex installation.

VI. PWAS VERSUS NATIVE APPS

Native mobile apps deliver rich experiences and

high performance, purchased at the expense of

storage space, lack of real-time updates, and low

search engine visibility. Traditional web apps suffer

from the inverse set of factors: lack of a native

compiled executable, along with dependence on

unreliable and potentially slow web connectivity.

Service workers are used in an attempt to give

progressive web apps the best of both these worlds.

VII. CONCLUSION

The research shows that the increasing popularity

of PWAs comes from the platform independence

that makes it assessible the same with all features

on all platforms. A PWA can run on almost every

platform with a browser capable of executing

HTML, CSS and JavaScript and can provide seem

less functionality like a native app. The ability to

execute without having to be loaded or installed on

the device makes it even more useful. This also

reduces the gap between different OS based apps

and leads to unification of the world.

VIII. ACKNOWLEDGMENT

This research paper is possible because of the

constant effort and guidance from Mr. Shambuj

Bhardwaj and Dr. Danish Ather, their consistent

motivation make me able to explore the possibilities

and abilities of this new emerging technology

Progressive Web Apps.

Fig.2 Differences between PWAs and Native apps

International Conference on Advanced Computing (ICAC-2019)

College of Computing Sciences and Information Technology (CCSIT) , Teerthanker Mahaveer University , Moradabad [2019]

354

IX. REFERENCES

[1] Homepage of App inventive [online]

https://appinventiv.com/blog/native-vs-progressive-web-apps

[2] Difference between PWA and Native [online]

https://blog.magestore.com/pwa-vs-native-app/

[3] Google Developers Website [online]

https://developers.google.com/web/progressive-web-apps/

[4] Wikipedia.org [online]

https://en.wikipedia.org/wiki/Progressive_Web_Apps

[5] PWA rocks homepage [online] https://pwa.rocks/

