
4th International Conference on System Modeling & Advancement in Research Trends (SMART)
College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2017]

537

Overview On Test Case Design Technique For Black

Box Testing
Kanika Agarwal, Mr. Ashendra Saxena

Student, Teerthanker Mahaveer University, CCSIT, Moradabad

Assistant Professor,Teerthanker Mahaveer University, CCSIT, Moradabad

agarwalskani@gmail.com

ashendrasaxena@gmail.com

Abstract— Software testing is done for analyzing software to

find the difference between required and existing condition. In

software development life cycle,Software testing is the most

important and time consuming part. It‘s main purpose is to

find software failures so that defects may be recovered and

corrected in early phase.In this review paper I have explained
one of the software testing technique i.e. Black Box Testing. It

is a method of generating test cases that are independent of

software internal structure, I have also briefly described

various different techniques for finding errors in black box

testing . Black box testing strategies play pivotal role in

detecting possible defects in software and can help in

successful completion of software according to functionality.

Black box testing techniques are important to test the

functionality of the software without knowing its inner detail

which makes sure correct, consistent, complete and accurate

behavior or function of a system.

Keywords— Software Testing, Black Box Testing, Test Cases

Techniques, Approaches Techniques.

I. INTRODUCTION

Black box testing is also called as behavioral testing, in which

the interior structure, logic of software that is being tested is

unknown to analyzer. This testing is based on requirement

specification and it‘s not necessary to analyze code. It is
basically performed under the end user point of view. It helps

to identify incomplete and unpredictable specifications, so that

they can be rectified later. Black box testing is done from

beginning of software project development cycle. Testers need

to gather end user requirements and based on that test

scenarios have to be prepared. Black box testing strategies are

used to test logical, data or behavioral dependencies, to

generate test data and quality of test cases which have

potential to guess more defects. Black box testing strategies

play pivotal role to detect possible defects in system and can

help in successful completion of system according to

functionality. The studies of five companies regarding

important black box testing strategies are

presented in this thesis. This study explores the black box

testing techniques which are present in literature and practiced
in industry as well. Black box testing have little or no

knowledge to the internal logical structure of the system. Thus,

it only examines the fundamental aspect of the system. It

makes sure that all inputs are properly accepted and outputs

are correctly produced.

1.1. Test Case Design-Need:
Just as code is designed and developed, test cases too must be

designed and then written. Exhaustive testing of any non-

trivial system is impractical. The input date domain is

extremely large. Test case design is required to derive an

optimal test suite which is of reasonable size and uncovers as

many errors as possible. Randomly selecting or writing test

cases does not indicate effectiveness of the testing. Writing a

large number of test cases does not mean that many errors in

the system would be uncovered.

I.2.Test case design techniques for black box testing:

Figure(I.2.a)

Figure above shows the different types of Black box testing

techniques.

Test case design

techniques

Decision Tables

State transition
diagrams

Equivalence class
partitioning

Boundary value

analysis

Orthogonal

arrays
All pairs

mailto:agarwalskani@gmail.com
mailto:ashendrasaxena@gmail.com

4th International Conference on System Modeling & Advancement in Research Trends (SMART)
College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2017]

538

I.3. Advantages of Black box testing:

i. Tests are effective on large units of code then glass box

testing

ii. Tester needs no knowledge of implementation, including

specific programming languages.

iii. Tester and programmer are independent of each other.

iv. Testing is done from a user‘s point of view.

v. Will help to expose any ambiguities or inconsistencies in

the specifications.

vi. Test cases can be designed as soon as the specifications

are complete.

I.4. Disadvantages of Black box testing:-

i. Test cases are hard to design without clear specifications.

ii. Only small numbers of possible input can actually be

tested.

iii. Some parts of the back end are not tested at all.

iv. Chances of having unidentified paths during the testing.

v. Chances of having repetition of tests that are already

done by programmer.

II. VARIOUS BLACK BOX TESTING TECHNIQUES

II.1. Equivalence Class Partitioning: In this procedure

information area of system is separated into equivalent classes

from where experiments can be done. This reduces the quality

of experiments. This procedure can be applied at any testing

level and tests one condition from each class.Basically it is a
method that divides the input data of a software unit into

partitions of data from which test cases can be derived. It

reduces no. of test cases. In equivalence class partitioning an

equivalence class is formed of the inputs for which the

behavior of the system is specified or expected to be similar.

An equivalence class represents a set of valid or invalid states

for input conditions. Typically, an input condition is either a

specific numeric values, array of values, a set of related values

or Boolean condition. Once we select equivalence classes for

each of the input, the next issue is to select the test cases

suitably.

 Approach:
i. Divide the input domain into classes of data for which

test cases can be generated.

ii. Attempting to uncover classes of error.s

iii. Divides the input domain of a program into classes of

data.

iv. Derives test case based on these partitions.

v. An equivalence class is a set of valid or invalid states of

input.

vi. Test case design is based on equivalence classes for an

input domain.

 Advantages:
i. It eliminates the need for exhaustive testing, which is not

feasible.

ii. It enables a tester to cover a large domain of inputs or

outputs with a smaller subset selected from an

equivalence class.

iii. It enables a tester to select a subset of test inputs with a

high probability of detecting a defect.

II.2. Boundary Value Analysis: This procedure mainly

concentrates on boundaries or extreme boundaries values that

are created in software that being tested. It also incorporates
inside and outside limits Boundaries and conditions are two

major sources of defect in software products. In boundary

value analysis, typical programming errors occur at the

boundaries of equivalence classes This may be purely due to

psychological factors. Programmers often fall to see special

processing required at the boundaries of equivalence classes

or Programmers may improperly use < instead of <=.

 Approach:
i. For a range of value bounded by a and b, test(a-precision

value),a,(a+ precision value),(b- precision value),b,(b+
precision value)

ii. If input conditions specify a number of values n, test

with(n-1),n and (n+1) input values.

iii. Apply 1 and 2 to output conditions(e.g., generate table of

minimum and maximum size).

iv. If internal program data structures have

boundaries(e.g.,buffer size, table limits), use input data

to exercise structures on boundaries.

 Advantages:

Boundaries and conditions are two major sources of defect in

software products. This technique aims to identify defects in
these areas.

II.3. Decision tables: Decision tables can be used when the

outcome or the logic involved in the program is based on a set

of decisions and rules which need to be followed. A decision

table lists the various decision variables, the conditions(or

values)assumed by each of the decision variables and the

actions taken in each combination or conditions. Variables

that contribute to the decision table are listed as the columns

of the table. Last column of the table is the action to be taken

for combination of values of the decision variables.

 Approach:

The steps for using decision table testing are as given below:

Step1:

Analyze the given test inputs or requirements and list out the

various conditions in the decision table.

Step2:

Calculate the number of possible combination(Rules)

Step3:

4th International Conference on System Modeling & Advancement in Research Trends (SMART)
College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2017]

539

Fill columns of the decision table with all possible
combinations(Rules)

Step4:

 Find out cases where the values assumed by a variable are

immaterial for a given combination. Fill the same by *don‘t

care* symbol.

Step5:

For each of the combination of values, find out the action or

expected result.

Step6:

Create at least one test case for each rule. If the rules are

binary, a single test for each combination is probably
sufficient. Else if a condition is a range of values, consider

testing at both the low and high end of range.

Advantages:

i. Enables us to get a ―Complete‖ view with no

consideration of dependence

ii. Enables us to look at and consider ―dependence,‖

―impossible,‖ and ―not relevant‖ situations and eliminate

some test cases.

II.4. State transition based testing: State is represented by a
circle. Transition is represented by a label on the

transition.Thus from the starting state to the end state the

various transitions and routes are represented in the form of a

transition diagram as mentioned. Create test cases in such a

way that all states are visited at least once, all events are

triggered at least once and all paths are executed at least once

(I.e. all transitions in the system are tested at least once).

 Approach:

The steps for using state transition testing are:

Step1:

a) Understand the various states that the system, user, or
object can be in, including the initial and final states.

b) Examples of states can be:‘User raising a purchase

order‘ or ‗leave request is accepted‘. These states will be

represented as:

Step 2:

Identify transitions, events, conditions, and actions that can-

and can‘t- apply in each state.

Step 3:

Use a graph or table to model the system. This graph or table

also serves as an oracle to predict correct system behavior

along with a requirments specification.
Step 4:

For each event and condition- that is, each transition- verify

that the correct action and next state occurs.

Step 5:

Create test cases in such a way that all states are visited at

least once, all events are triggered at least oce and all paths are

executed at least once(I.e. all transitions in the system are

tested at least once)

 Advantages:
i. All possible states and transitions in a system would be

covered(including valid and invalid).

ii. Critical when testing high risk systems like Avionics or

medical devices where testing of all possible states and

transitions is required(not just valid ones).

II.5. Orthogonal Array Testing: This procedure used when

number of inputs to software is comparatively small but too

complex for carrying complete testing of every possible input

to software. A device for selecting a ―good‖ subset of all

possible combinations. Too many combinations to consider.
Risky to skip testing large parts of the functionality or

combinations. So what is there as a compromise solution. All

PAIRS(each option with every other option ONCE, but not all

combinations across all options). Exercise multiple pairs

simultaneously. Requires knowledge of all legitimate

combinations.

 Approach:
The steps for using orthogonal Array technique are:

Step1:

Analyze the given test inputs or requirements and list out the
variables that needs to be tested for interaction.

Step2:

Determine the number of choices or values for each variable.

Step3: Locate an orthogonal array which has a column for

each variable and values within the columns that correspond

to the values for each variable.

Step4:

Map the variables with their values on to the orthogonal array.

Step5:

Each row in the table corresponds to a test condition or a

unique test case.

 Advantages:

i. Provide uniformly distributed coverage of the test

domain.

ii. Concise test set with fewer test cases are created.

iii. All pair-wise combinations of test set are created.

iv. Simpler to generate and less error prone than test sets

created manually

v. Reduces testing cycle time.

II.6. All Pair Testing: In this procedure all possible

combinations of input parameters are designed and executed.
Its main aim is to cover all possible inputs. Testing deals with

validating the different values for all variables in the system.

We generate test cases by pairing values of different variables.

 Approach:
Step1:

List out the variables in the application to be tested and the

various possible values each of the variables can hold.

Step2:

Combine or group the values where ever possible.

4th International Conference on System Modeling & Advancement in Research Trends (SMART)
College of Computing Sciences and Information Technology (CCSIT) ,Teerthanker Mahaveer University , Moradabad [2017]

540

Step3:
Create the all pairs table by putting the variables in the Top

row and start by filling in the values in each column.

Step4:

If a combination does not exist, then swap around with the

values to see if the combination can be got.

Step5:

Else add a new row

Step6:

Each row in the table corresponds to a test case.

Advantages:
i. Significantly reduces the number of test cases.

ii. Pairwise testing protects against pairwise bugs which

represent the majority of combinatorial bugs and such

bugs are a lot more likely to happen than ones that only

happen with more variables.

iii. Tools are available which can create the All pairs table

automatically(and are no longer crated by hand).

iv. Efficiency(I.e., amount time and resources required to

conduct testing) is improved because the much smaller

pairwise test suite achieves the same level of coverage as

larger combinatorial test suites.

III. CONCLUSION

Hence, Software testing is important, and testing techniques

are too, because they have the main aim to improve and make

easier this process. There is considerable controversy between

Software testing writers and consultants about what is

important in software testing and what constitutes responsible

in software testing. First quality is main focus of any software

engineering project. Without measuring, we cannot be sure of

the level of quality in a software. So the methods of measuring
the quality of software testing techniques. This paper relates

various types of testing techniques that we apply in measuring

various quality attributes. Software testing research is the

driving element of development and application. In this era of

new and higher demand of software testing, it is important to

constantly summarize new achievements and propose

different ideas about software testing.

REFERENCES

[1] D. Shao, S. Khurshid, and D. E. Perry, ―A Case for White-box Testing

Using Declarative Specifications Poster Abstract,‖ in Testing: Academic and

Industrial Conference Practice and Research Techniques - MUTATION, 2007.

TAICPART-MUTATION 2007, 2007, p. 137.

[2] F. Saglietti, N. Oster amd F. Pinte, ‖White and grey-box verification and

validation approaches for safety-and security- critical software systems,‖

Information Security Techincal Report, Vol. 13, no. 1, pp 10-16, 2008.

[3] H. Liu and H. B. Kuan Tan, ―Covering code behavior on input validation

in functional testing,‖ Information and Software Technology, vol. 51, no. 2,

pp. 546–553, Feb. 2009

[4] Irena Jovanovic,‖Software Testing Methods and Techniques‖, IPSI BGD

Internet Research Society, Vol. 5, No. 1, pp 30-41, January 2009.

[5] J. H. Hayes and A. J. Offutt, ―Increased software reliability through input

validation analysis and testing,‖ in Software Reliability Engineering, 1999.

Proceedings. 10th International Symposium on, 1999, pp. 199 –209.

[6] M. Shaw, ―What makes good research in software engineering?,‖

International Journal on Software Tools for Technology Transfer (STTT), vol.

4, no. 1, pp. 1–7, 2002.

[7] Mohd. Ehmer Khan, ―Difference Approaches to Black box testing

technique for finding Errors‖, IJSEA, Vol. 2, No. 4, pp 31-40, October 2011.

[8] P. Jorgensen, Software testing: a craftman‘s approach, CRC Press, 2002. p.

359.

[9] S.Liu and Y.Chen ,―A Relation-based method combining functional and

structiural testing for test case generation,‖ Journal of Systems and Software,

Vol.81,No. 2,pp, 234-248, Feb.2008.

[10] S.M.K Quadri and shiek umar Farooq, ―Software Testing- Goals and

Techniques,‖ International Journal of Computer Applications (0975-8887)

Vol. 6, No.9,September 2011.

[11] S.M.K Quadri and shiek umar Farooq,‖Testing Techniques Selection: A

Systematic Approach‖, Proceedings of the 5th National Conference:

INIACom-2011.pp-279-281, March 10-11, 2011.

[12] Shivkumar Hamukhrai Trivedi,‖Software Testing Techniques‖,

International journal of Computer Science and Software Engineering. Vol. 2.

Issue 10, October2012, ISSN:2277 128X

[13] Srinivas Nidhra and Jagruthi Dondeti, ―Black box and White box

techniques-A Literature review.‖, International Journal of Embedded Systems

and Applications, Vol 2, No. 2, June 2012.

[14] Surendra Singh Rathod, ―A Scenario of Different types of Testing

Techniques in Software Engineering‖, International Journal of Advanced

Research in Computer Science and Software Engineering, Vol. 4, Issue 6,

June 2014, ISSN:2277 128X.

[15] T. Murnane and K. Read ―On the effectiveness of mutation analysis as a

black box testing technique,‖ in software Engineering Conference. 2001.

Proceedings. 2001 Australian. 2001, pp. 12-20.

[16] Taraq Hussain and Dr. Satyaveer Singh, ―A Comparative Study of

Software Testing Techniques Viz. White box testing Black box testing and

Grey box testing‖, International Journal of Allied Practice, Research and

Review, Vol. 2, Issue 4, 2015, pp 26-33, ISSN:2350-1294.

[17] User Acceptance Testing available at

―http://guide.agilealliance.org/guide/acceptance.html‖

[18] User Acceptance Testing available at

―https://www.technopedia.com/definition/3887/user-acceptance-testing-uat‖

